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Abstract

The insight we gain from epidemiology provides an outlet to numerous possibil-
ities of control measures in this seemingly perennial struggle we endure against the
effects of disease. This report outlines the theory of compartmental disease mod-
elling, and it’s use in intervention measures against disease. Specifically, the focus is
on the Basic Reproduction Number, R0, which simply put is a threshold of the initial
severity of a disease. Several qualitative aspects of the basic reproduction number
are discussed, and a summary of the Next Generation Matrix Method to obtain R0

is given.

We then propose an original compartmental model for the viral dynamics among
the hepatocyte population under a Hepatitis B virus (HBV) infection. Generaliza-
tions of the model are made, with further development of the model with explicit time
delay. Expressions for R0 are sought for each model, which incorporates the study
of systems of differential equations, delay differential equations, the Next Generation
Matrix method, and the stability analysis of steady states.
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Chapter 1

Introduction

Infectious diseases have invariably accompanied human history, and have fre-
quently dominated the main stage of its course. Within the last hundred years,
five major flu pandemics have affected the world, including the infamous Spanish
influenza which took between an estimated 50-100 million lives suggested by a 2002
note on the global mortality of the influenza [5]. Furthermore, despite research and
development of vaccines and cures, numerous infectious diseases nevertheless affect
our lives without discrimination. Hence the importance of the study of such capable
entities naturally arise to the ‘potentially affected’.

There are in general three things that we, as the ‘potentially affected’, do upon
the strike of a disease. Those are to treat the diseased, record the cost such as hu-
man lives lost, and to predict and prevent future cases. The process of formulating a
mathematical model of disease transmission arises from the phenomenological results
of the first two courses of action. Then the model can be analysed both numerically
and analytically to develop rational strategies against future encounters with an epi-
demic.

We start by observing that the ‘potentially affected’ population can be categorised
into the discrete state of affected and not affected by the disease. Undeniably, this is
a subjective and ambiguous process, thus it is imperative that we acknowledge the
differences between different model definitions and assumptions.

1.1 Analysis of Compartmental Disease Dynamics

As introduced above, we consider a population composed of individuals, each of
whom are considered to be a single variable assuming one of many discrete states.
Therefore, we can classify the population into sub-populations or compartments de-
fined by the discrete states that the individuals take.
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1.1.1 Setting the Scene

The discrete states are given by the progression of a disease on an individual. The
simplest classification, and what becomes the basis of all the other models is a di-
chotomy of the population into the compartments: Susceptible(S) and Infected(I).
Some other prominently featuring compartments include, Exposed(E), and Recov-
ered/Removed(R). The ‘Exposed’ compartment appears with diseases that have in-
cubation periods or latency periods (Average incubation periods of some well-known
diseases are : Common Cold - 24 to 72 hours, Measles - 10 to 12 days, Creutzfeldt-
Jakob disease - 11 to 12 years, etc.), and the ’Recovered/Removed’ compartment is
associated with acquired immunity to the disease or death by the disease. Depending
on the model formulation, the population can be divided into numerous compart-
ments, which may include additional compartments such as quarantined, or those
undergoing treatment.

In the partitioned system, let us distinguish between the ‘disease’ class and the
‘non-disease’ class. As an example, consider a population consisting of 4 compart-
ments: S,E, I, R. Then, we can say that the E and I compartments are in the
disease class, and S and R in the ‘non-disease’ class. For a general population with
k = n+m compartments, where n denotes the number of compartments in the dis-
ease class and m the number of compartments in the non-disease class, let us denote
the ith compartment of each class as follows:

xi = ith disease compartment, where i ∈ {1, 2, ... , n}
yi = ith non-disease compartment, where i ∈ {1, 2, ... ,m}

It is intuitive that in a given population, there are interactions between each
compartment in xi and yi, governing their respective inflow and outflow. Embedded
in the mechanism of an individual transiting through the discrete states, by those
interactions, is the dynamics of disease transmission and progression. Therefore, the
mathematical modelling of the rate of increase and decrease of the compartments
gives an overarching view of the governing dynamics between the sub-populations.

Naturally, a system of differential equations can arise from the concept above,
formulating the mathematical model for disease transmission. The rate of change of
compartment size is dependent on several factors such as the rate of infection and
rate of recovery. Hence the system of differential equations are formed with these
factors which affect the rate of change of compartment size. The ith differential
equation has the form:

d

dt
(ith Compartment size) = Inflow rates−Outflow rates
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Generally, the system of differential equations can be expressed with the following
4 components.

Ii(x, y) : Rate of natural influx into the ith compartment independent of the disease
progression. e.g. Birth rate, Immigration rate

Fi(x, y) : Rate of increase of the ith disease compartment due to infection, and
disease progression.

Vi(x, y) : Rate of decrease of the ith disease compartment due to disease progression,
death by disease, and recovery from disease.

Oi(x, y) : Rate of natural outflux to the ith compartment independent of the disease
progression e.g. Death rate, Immigration rate

Such notation can be seen clearly with the following examples,

1. A Simple Linearly Progressing Disease:

y1 x1 x2 y2
I1 F1

O1

F2 = V1

I2

O2

V2

O3

O4

The above diagram of a disease system is formalized as the following:

dy1

dt
= I1 −F1 −O1

dx1

dt
= I2 + F1 − V1 −O2

dx2

dt
= F2 − V2 −O3

dy2

dt
= V2 +O4
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2. A Complicated Example :

y1

x1

x2

y4

y2

y3

I1

F1a

O1 F2a

I2

F2b

(V1b)
F1b

(V2b)

V2a

O3

O4

V1a

V1c

F2c

O2

I3

The above diagram of a disease system is formalised as the following:

dy1

dt
= I1 −F1a −F2a −O1

dy2

dt
= I3 −F2c

dx1

dt
= I2 + F1 − V1, Where F1 = F1a + F1b and V1 = V1a + V1b + V1c

dx2

dt
= F2 − V2 −O3, Where F2 = F2a + F2b + F2c and V2 = V2a + V2b

dy3

dt
= V1c +O2

dy4

dt
= V1a + V2a −O4

As you can see from the examples above, F and V are closed within the proposed
systems, as they cancel out as a whole. The eventual net rate of increase/decrease
of the system is only dependent on I and O which suggests that the system reduces
to the standard population dynamics, meaning, for example, the dynamics of birth,
death and migration, when the disease is not considered. Therefore, arguably the
disease dynamics of the whole system can be encapsulated in the following set of
differential equations, which is a simplification of the decoupling of these types of
systems (at a steady state).

x′i = Fi(x, y)− Vi(x, y) i = 1, ... , n
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1.1.2 Key Concepts

Before moving on to analysing the differential equations, let us first outline the key
objectives of such analysis in current studies of mathematical epidemiology.

• To understand the factors involved in the transmission of a disease

• To find a threshold that can present us with an idea of the severity of an
epidemic

• To solve the models of epidemiology both qualitatively and quantitatively to
seek steady states, and to predict long-term behaviour

• To deduce possible intervention strategies based on the above results to reduce
disease spread

These aims give rise to the need for certain important mathematical concepts, and
one of the most important of all is known as the Basic Reproduction Number,R0.
Simply put, it is a threshold with the property that if R0 < 1 then the disease dies
out, and if R0 > 1 then it becomes an epidemic. R0 is acquired through the study
of the stability of steady states of the disease dynamics. There are in general two
important types of steady states that arise from the systems of differential equations.

The first is the ‘Disease-Free Equilibrium’, which is the steady state where all
‘disease variables’ are zero. For example, the disease free equilibrium of a SEIR model
can be represented as (S, 0, 0, R). This can be considered in two scenarios, the first
being the initial starting point where the disease is about to spread, and the latter
is when the epidemic has passed through, and there are no more infected individuals.

The second steady state is the ‘Endemic Steady State’, where all compartmental
values are non-zero. For example, an endemic equilibrium of a SEIR model will look
like (S∗, E∗, I∗, R∗) where S∗, E∗, I∗, R∗ > 0.

The value of the basic reproduction number can indicate the potential for a newly
introduced disease to spread in the given population, and can thus be related to the
stability of the disease-free equilibrium. If the disease-free equilibrium is stable then
a small introduction of disease will die out and the system will go back to the disease-
free equilibrium. We only expect the system to evolve to the endemic equilibrium in
situations where the disease-free equilibrium is unstable. The stability of the disease-
free equilibrium is usually given by a condition imposed on an expression made of
the model parameters, and therefore it suits our definition as a basic reproduction
number. It can be thought of as a critical point up to where the system will return to
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the initial stable disease-free equilibrium when a small perturbation has been applied
(whereby small perturbation we usually mean the introduction of a small number of
infectious individuals).

Already from the attempt of defining the basic reproduction number, we can
see that it cannot have a rigorous definition among all models and all diseases.
The ‘critical point’ is given by the analysis of the model at the initial disease-free
equilibrium, and does not completely guarantee the global stability of the steady
state. Furthermore, there are cases where a disease-free equilibrium does not exist,
or is unstable. At most the basic reproduction number signifies that if R0 < 1, the
disease free equilibrium is locally stable. In some cases, such as when an endemic
equilibrium coexists with a disease free equilibrium, bifurcation can happen in the
backward direction, and thus another condition for global stability might be required
(see diagram below).

Forward Bifurcation

E
n
d
e
m

ic
S
te

a
d
y

S
ta

te

R01

Backward Bifurcation

E
n
d
e
m

ic
S
te

a
d
y

S
ta

te

R01

The above are the bifurcation curves at R0 = 1 for the forward and backward
bifurcation cases. The plotted curves represent the asymptotic steady state, with
the blue denoting an unstable equilibrium, and red denoting a stable equilibrium,
as also shown by the arrows. As seen from the graphs, for the forward bifurcation
case, R0 < 1 implies that the disease free state (when endemic steady state = 0),
is globally stable, but in the backward bifurcation case, a value for R0 smaller than
one, doesn’t necessarily imply global stability of the disease-free equilibrium. In
backward bifurcation cases, an endemic steady state can exist even with R0 < 1. A
more detailed discussion on R0 and the local and global stability of the disease-free
equilibrium is given in [3].

With these caveats in understanding the basic reproduction number R0, the use
of R0 is highlighted more so in the analysis of the model itself rather than as a
comparative metric between diseases. In fact, most of the key objectives outlined
previously are satisfied in the attempt to obtain such a number, and in the examina-
tion of it. Many of the factors that are involved in the transmission of the disease are
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embedded in the model parameters used to form R0, and thus we can deduce real
strategies about those parameters to reduce disease spread (i.e. make R0 smaller).
Furthermore, we have found a strong candidate for a threshold which defines the
severity of an epidemic and the method to obtain that threshold is the steady state
analysis of the system and stability analysis of the steady states. Thus, it is clear to
see that despite its limits, R0 by its nature provides compelling information to the
epidemiologist.
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Chapter 2

Computing the Basic
Reproduction Number, R0

As seen in the previous chapter, the calculation of the basic reproduction number
is subjective to the model and the disease characteristics. Presented here is the
general principle of acquiring the expression for the basic reproduction number, R0.

2.1 The Kermack-McKendrick Model

Let us now consider a simple model presented by Kermack and McKendrick [6],
discussing a SIR (Susceptible (S), Infectious (I), Removed (R)) model in a closed
population. The system of differential equations is as follows:

dS

dt
= −βSI

dI

dt
= βSI − γI

dR

dt
= γI

As reviewed earlier, the disease dynamics can be simplified to the set of differential
equations of the variables in the diseased class for the study of initial disease dynamics
about the disease-free equilibrium. If one is interested in the initial dynamics of a
small introduction of infectious individuals to a susceptible population, then, for this
particularly simple system, one can determine the initial growth or decay of I(t)
from

dI

dt
= βS(0)I − γI.

Usually the right hand sides of the differential equations for the disease compart-
ments are linearised close to a disease-free equilibrium. The Kermack-McKendrick
model does not have a single disease-free equilibrium, it has a whole line of equilibria

10



with I = 0, and so we simply evaluate S at S(0), rather than at a steady state value.

The philosophy behind the basic reproduction number is to seek a quantity which
describes the initial ‘invasive severity’ of a disease to a population. Thus suppose a
small number of infected individuals I(0) are introduced to the completely susceptible
population. Then the differential equation near the beginning of the dynamics as
noted above approximates to:

dI

dt
= (βS(0)− γ)I

This can be solved easily for I with respect to t and given the initial introduction
of the infected individuals I(0), the solution is as follows:

I(t) = I(0) e(βS(0)−γ)t

As we have an explicit formula describing the initial behaviour of the infected
class, the ’invasive severity’ of the disease can be said to be analogous to whether
the I compartment will grow or not. From the exponential function, it is clear to see
that I(t) will grow if βS(0) > γ and I(t) will decay if βS(0) < γ. Here it is already
clear to see that we can attain a form of R0 based on the definition that R0 < 1
means the disease will die out and otherwise continue to spread. Rearranging the
ineqaulities above, we find that the following quantity satisfies the conditions stated
above.

R0 =
βS(0)

γ

We see that in the above case, the basic reproduction number depends on the
initial value S(0) for the variable S. This simple example illustrates the philosophy
behind computing the basic reproduction number. To elaborate, the process is to, if
possible, approximate or linearize about the disease free equilibrium (or the initial
state), then to study the resulting linearized system to find the condition for the
disease free equilibrium to be stable (or any notion that can be used to suggest the
‘invasive severity’).

The interpretation of such a process is subjective, and so there are numerous
methods to calculate the basic reproduction number. It is also important to note that
sometimes attaining a quantity that can embody the concept of a basic reproduction
number might be impossible to find. Nonetheless, in the next subsection a method
that attempts to standardize the process first introduced by Diekmann, Heesterbeek,
and Metz [1] is summarized.

2.2 The Next Generation Matrix Method

The mathematical background for the next generation matrix method for calculat-
ing the basic reproduction number can be found in the books [2] and [3]. The method

11



itself captures the changes in states of individuals in compartments per generation
given by a ‘next generation’ matrix. It is from this matrix that one seeks a threshold
that resembles the basic reproduction number. We investigate parameters involved
in the matrix such that successive iterations of applying the ‘next generation matrix’
to the original distribution of individuals will result in a convergence to a stable
distribution, in our case the disease free equilibrium.

2.2.1 The Idea

This notion can be condensed into a difference equation.

φt+1 = Kφt

where φt is a vector representing the distribution of states at generation t, and
K represents the so called next generation matrix. The solution of this difference
equation is simply:

φt = Ktφ0

Kt represents t successive matrix multiplication of K and, φ0 is an initial distribu-
tion. Here we can represent the initial distribution as a linear combination of the
independent eigenvectors of K, assuming they are linearly independent, which will
form a basis. Thus φ0 can be written as:

φ0 = c1 ~x1 + c2 ~x2 + · · ·+ cn ~xn

where the ci are constants and the ~xi are the eigenvectors of K. Multiplying φ0 by
K would imply :

Kφ0 = c1λ1 ~x1 + c2λ2 ~x2 + · · ·+ cnλn ~xn

by the definition of eigenvectors and eigenvalues, K~xi = λiK. Therefore, it is possible
to ‘explicitly’ write the solution to the difference equation as:

φt = Ktφ0 = c1λ
t
1 ~x1 + c2λ

t
2 ~x2 + · · ·+ cnλ

t
n ~xn

Assuming that K is an irreducible non-negative real matrix, then by the Perron-
Frobenius theorem, K has a unique strictly dominant real eigenvalue which we will
denote λd. Then, it is clear that we can form a threshold which determines whether
successive generations will mean an increase of size of the diseased compartments or
not. If λd = 1, then the solution becomes:

φt = Ktφ0 = cd ~xd + terms that tend to 0 as t→∞

The implication is that an endemic steady state is found when λd = 1, and when
λ < 1 the solution converges to 0 (disease-free steady state), and diverges (epidemic)
otherwise. Thus, if we can formulate our next generation matrix K such that it
reflects the linearisation of the disease compartments at the disease-free equilibrium,
then we are able to define the spectral radius of K, ρ(K) as the basic reproduction
number R0, for the system.
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2.2.2 Formulating the Next Generation Matrix

As mentioned before, the basic reproduction number is a measure of the severity
of the initial disease progression, thus the evaluation is performed at the linearised
disease-free steady state representing the moment the disease enters a population.
The elements of the next generation matrix are generational changes that a com-
partment causes in another compartment. Considering only the reduced system of
disease class compartments, this ‘generational change’ for the given initialisation
above can be identified with the expected number of infections produced per newly
introduced infected individuals to the system. Successive applications of the gen-
erational changes to the initial distribution of the disease compartments shows the
progression of the increase in disease compartments. Additionally, as shown before,
the dominant eigenvalue of the next generation matrix governs the long term growth
of the disease compartment.

First recall that the initial disease dynamics of a system are encapsulated in the
set of differential equations of disease compartments as they are decoupled from the
remaining equations when linearised at the disease-free equilibrium:

x′i = Fi(x, y)− Vi(x, y) i = 1, ... , n, with

Fi(x, y) : Rate of increase of the ith disease compartment due to infection only.
Vi(x, y) : Rate of decrease of the ith disease compartment due to disease progression,
death by disease, and recovery from disease.

Linearising these equations about the disease free equilibrium (0, y0) and writing
in matrix form (per individual in compartment) results in:

x′ = (F − V )x, where Fij =
∂Fi
∂xj

(0, y0) and Vij =
∂Vi
∂xj

(0, y0)

As the differential equations are composed of rates of transmission/ transition,
one can naturally think to calculate the expected number of infections using the
rates. With simple dimensional analysis, it is trivial to see that the expected number
of infections can be given by the product of the rate of infection and the expected
duration for which the infection can occur. From the matrix representation of the
system, the infection rate is already given by F , where it’s elements Fij, are defined
to be the rate of increase in the ith disease compartment due to an infection by an
individual in compartment j. On the other hand, retrieving the expected duration of
infectiousness is not as easy. We can think of the expected duration in compartment
i as :

∞∑
τ=0

(τ · Pr(τ, i))

Where τ stands for a unit duration of time, and Pr denotes the probability that the
individual is in the compartment for τ amounts of time. A key note would be that
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the expected time that an infected individual stays in a compartment is independent
of new infections but only dependent on state transitions and death.

Here Pr can be evaluated by noticing

dPr

dτ
= rate of change of probability over unit time interval

where given the note above, the rate of change of probability over unit time interval
can be given as (C −D)Pr, the matrix C representing compartmental progresssion
and D means deaths. Notice that the matrix −V from the linearized matrix equation
above is exactly the quantity being described, where the elements of −Vij are the
rate of change in the compartment i by an individual’s non-infective action (death,
progression) in compartment j. Thus with initial condition (disease-free equilibrium,
all disease variables are 0) x(0) = x0,

dPr

dτ
= −V Pr

This results in the solution :
Pr(τ, i) = e−V τx0

Connecting back to retreiving the expected duration, the continuous form of the
summation defined above would be∫ ∞

0

e−V τx0 dτ = V −1x0

Consequently, the next generation matrix can now be formulated using the given
system as follows:

K = (expected rate of infection)(expected duration) = FV −1

2.2.3 A Clarifying Example, the SEIR Model

A demonstration of the method described above can be seen though this example of
the SEIR model.

dS

dt
= Π− βSI − µS

dE

dt
= βSI − (µ+ κ)E

dI

dt
= κE − (µ+ α)I

dR

dt
= αI − µR
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From the system of differential equations, the equations describing the disease
dynamics are extracted.

dE

dt
= βSI − (µ+ κ)E

dI

dt
= κE − (µ+ α)I

With this extracted system, we can define the F and V for the SEIR model, where

F =

(
βSI

0

)
, V =

(
(µ+ κ)E

(µ+ α)I − κE

)
Thus, the Jacobian matrix equivalent F and V at the linearized disease free equilib-
rium are

F =

(
0 βS0

0 0

)
, V =

(
µ+ κ 0
−κ µ+ α

)
where S0 = Π

µ
.

The next step would be to find K, the next generation matrix. By definition it
is given by K = FV −1 as shown above, thus

K = FV −1 =

(
0 βS0

0 0

)
1

(µ+ κ)(µ+ α)

(
µ+ α 0
κ µ+ κ

)
Therefore, the next generation matrix for the SEIR system is

K =
1

(µ+ κ)(µ+ α)

(
βκS0 βS0(µ+ κ)

0 0

)
Following the idea developed from the previous subsection that the dominant real
eigenvalue determines the threshold which can be defined as the basic reproduction
number, we find the spectral radius ρ(K) of K.

R0 = ρ(K) = max
i=1,...,n

|λi|

where λi denotes the eigenvalues of the matrix K.

The eigenvalues of the above matrix K are 0 and βκS0

(µ+κ)(µ+α)
. Hence the basic

reproduction number for the given SEIR system can be given as:

R0 =
βκS0

(µ+ κ)(µ+ α)

15



This is a realistic basic reproduction number, as it makes epidemiological sense.
R0 increases with β and Π (recall that S0 = Π

µ
), which is natural as the more

susceptible beings (Π) there are, the more likely an infection will happen, and the
more frequent the contact (β) between susceptibles and infected, the more likely an
epidemic will occur. On the other hand, the natural mortality rate (µ), and recovery
rate (α) are inversely proportional to the basic reproduction number, as expected. It
is through this type of analysis of the basic reproduction number that we can make
relevant strategies to prevent and prepare for an epidemic. For simple models like
this, there may not be many parameters to consider and there might not be a realistic
parameter that we can control, but for more complicated and ‘realistic’ models, we
can attempt to find intervention strategies to control the initial severity/progression
of a disease. Sometimes R0 is highly sensitive to a parameter that cannot in practice
be controlled by intervention measures such as µ which models natural death.

2.3 Delay Differential Equations

Delay differential equations capture the notion of an ‘aftereffect’ or a time-delay in
a process. The derivative of a function is given in terms of (t−τ), indicating the delay
with τ , in this report, always a constant. This is a useful tool for epidemiological
modelling, as many involve time delays which can model latent periods, dormant
stages, etc.

2.3.1 SEIR example

We can modify the SEIR example from before, to make it into a system of delay
differential equations.

dS

dt
= Π− βSI − µS

dE

dt
= βSI − βS(t− τ)I(t− τ)e−µτ − µE

dI

dt
= βS(t− τ)I(t− τ)e−µτ − (µ+ α)I

dR

dt
= αI − µR

As seen from the equations, this describes a definite time of τ spent in the ‘Exposed’
compartment before moving into the ‘Infected’ compartment. The exponential term
indicates the natural death of individuals in the E compartment during the time
delay period.

To deduce a basic reproduction number for this system, the convential next gen-
eration matrix method is ill-suited due to presence of the time delay. Instead, as
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introduced in the formulation of the basic reproduction number, a more direct ap-
proach of finding a stability threshold is required.

Linearising about the disease-free equilibrium (S,E, I, R) = (Π
µ
, 0, 0, 0), by setting

S(t) =
Π

µ
+ S̃(t)

E(t) = 0 + Ẽ(t)

I(t) = 0 + Ĩ(t)

R(t) = 0 + R̃(t)

where S̃, Ẽ, Ĩ, R̃ are small, we have the linearised system (ignoring products of small
quantities):

dS̃

dt
= −βΠ

µ
Ĩ(t)− µS̃(t)

dẼ

dt
= β

Π

µ
Ĩ(t)− βΠ

µ
Ĩ(t− τ)e−µτ − µẼ(t)

dĨ

dt
= β

Π

µ
Ĩ(t− τ)e−µτ − (µ+ α)Ĩ

dR̃

dt
= αĨ − µR̃

The linearized Ẽ and Ĩ equations can be studied independently because, as a sys-
tem of two equations, they only involve Ẽ and Ĩ (they form a decoupled subsystem).

The decoupled subsystem determining Ẽ and Ĩ is linear, thus trying a solution
of the form

(Ẽ(t), Ĩ(t)) = (c1, c2)eλt

gives

λc1e
λt = β

Π

µ
c2e

λt − βΠ

µ
c2e
−µτeλ(t−τ) − µc1e

λt

λc2e
λt = β

Π

µ
c2e
−µτeλ(t−τ) − (µ+ α)c2e

λt

Cancelling the eλt we arrive at

λc1e
λt =

(
β

Π

µ
− βΠ

µ
e−µτe−λτ − µ

)
c2(

λ+ µ+ α− βΠ

µ
e−µτe−λτ

)
c2 = 0
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From the second equation we find a condition for a non-trivial solution. It requires
that

λ+ µ+ α = β
Π

µ
e−(µ+λ)τ

This is the characteristic equation (to be solved for λ), but it cannot be solved for
λ exactly, because it is a transcendental equation; not a polynomial. The stability of
the disease-free steady state is guaranteed if the compartments E and I are converg-
ing to 0 as t→∞. Thus we require λ to be negative or complex with negative real
part. We need to know under what conditions its roots all satisfy Re(λ) < 0. The
trancendental equation will have infinitely many complex roots and finitely many real
roots. In this case, there is actually only one real root. We determine graphically
whether the real root is negative or positive. Plotting the graph of

y = λ+ µ+ α (blue) and y = β
Π

µ
e−(λ+µ)τ (red)

λ

y

λ

y

we have 2 cases, the left depicting the case where the real root is negative, and
the right showing the real root to be positive. The graph shows that the only real
root is negative if [

λ+ µ+ α

]
λ=0

>

[
β

Π

µ
e−(λ+µ)τ

]
λ=0

⇐⇒ µ+ α > β
Π

µ
e−µτ

This implies that R0 < 1 where

R0 =
βΠe−µτ

µ(µ+ α)
=
βS0e

−µτ

µ+ α

Therefore, we have a basic reproduction number involving the explicit time delay
τ . Notice how the SEIR model with and without the delay are two approaches to
model latency. The comparison between the basic reproduction number of the two
models gives insight into how latency is modelled differently.
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Recall the SEIR model without the delay

dS

dt
= Π− βSI − µS

dE

dt
= βSI − (µ+ κ)E

dI

dt
= κE − (µ+ α)I

dR

dt
= αI − µR

The basic reproduction number for this model is derived in the previous subsec-
tion as

R0 =
βS0

µ+ α

κ

µ+ κ

The difference between the two basic reproduction numbers is that e−µτ gets re-
placed by κ

µ+κ
. In one model, τ is the latency (the same for every individual), and

the other model we only take the mean latency time 1
κ
.

Obviously e−τµ is not equal to κ
µ+κ

, but note that

e−µτ =
1

eµτ
=

1

1 + µτ + µ2τ2

2!
+ · · ·

' 1

1 + µτ

if the latency time τ is small.

Then we can say that
1

1 + µτ
=

κ

µ+ κ

provied τ = 1
κ
. This makes sense because we have already noted that in one model

the latency time is τ while in the other the mean latency time is 1
κ
.
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Chapter 3

Dynamics of Hepatitis B

In this chapter we apply the knowledge and methodologies of previous chapters
to a real life example, Hepatitis B. We propose and study systems with and without
time delays, analysing their differences, and deriving a basic reproduction number
for each model.

The models proposed in this chapter are my own original work and do not come
from published literature.

3.1 Hepatitis B

Hepatitis B is a general liver infection of the hepatitis B DNA virus, affecting
the hepatocytes. The infection can either result in a self-limiting acute infection or a
persisting chronic infection, and it is easily distinguishable via the different serology
(a presence of the IgM anti-HBc antibody indicates an acute infection) of the two.
The World Health Organisation estimates that 257 million people live with a hep-
atitis B infection. This is about 8 times more than the estimated number of people
living with HIV, asserting the fact that hepatitis B creates a huge burden on society
and the medical field. Its prevalence and its serious yet overlooked impact on the
world community gives rise to the urgency and necessity to study and research its
properties with the ultimate goal of eradication.

Transmitted through the contact of bodily fluids, most infections of hepatitis are
asymptomatic except for a mild flu-like symptom during acute infections. The real
concern lies with the chronic infection, which is associated with many secondary com-
plications such as cirrhosis and hepatocellular carcinoma (HCC) after a long period
of liver damage. These are serious complications which often decrease the quality
of life and the expected life span of the patients. The chronic infection affects the
majority (90%) of people with a prenatal infection, and the risk of the infection going
chronic decreases with age (less than 5% when infectd as an adult).
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The clinical progression of an acute hepatitis B infection is as follows:
Once infected, there are three pathways.

• Recovery

• Evolution into Chronic Hepatitis - spread of virus through the entire hepatocyte
population, without effective immune response.

• Fulminant Hepatitis - an unlikely event where a large portion of the hepatocyte
population is destroyed, resulting in liver failure and death.

In the event that the infection persists, i.e a chronic infection, the course of the
disease is hypothesised to follow a certain stage structure, not completely mutually
exclusive to each other.

1. Immunotolerant phase : Unresponsive immune system to the viral infection,
high viral titre, low inflammation.

2. Immune clearance phase : Cytotoxic T cells (CTLs) target and destroy infected
cells resulting in a drop in viral titre, at the expense of increased inflammation.

3. Inactive phase : Virtually non-existent replication of virus.

4. Reactivation phase : Increase in viral activity and inflammation.

5. Cirrhosis and HCC : Mutation of the hepatocyte into a fibrous cell and/or a
cancer cell. Incidence is higher with age and viral titre.

The summary of the molecular biology of a hepatitis B virus infection is cov-
ered in a concise manner by Seeger and Mason [8]. Addtionally, the World Health
Organisation and the Center for Disease Control has professional summaries which
aided in the foundation of certain assumptions made during the formulation of the
following model.

3.2 A Cellular Model of the Disease Progression

of a Hepatitis B infection

In accordance to the knowledge of the disease progression on the cell population
level, a model with 6 cell population compartments is proposed below, which aims
to describe the dynamics in the previous section. A brief introduction of the six
compartments are below:

1. Healthy Hepatocytes (H) : This is the compartment equivalent to the
Susceptible class.
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2. Exposed (E) : Cells that are exposed to the Hepatitis B virus, yet due to the
time required to start replication, are currently not replicating yet

3. Infectious but under Immune Tolerance (Itol) : These are cells that are
infected with the virus, replicating, yet do not receive immune pressure from
the CTLs in a natural phenomenon called Immune Tolerance. The ‘tol’ stands
for ‘tolerant’, to describe the immune tolerant cells.

4. Infectious and inducing Immune Response (Ivul) : These are cells that
are infected with the virus and replicating the virus, which are receiving im-
mune pressure and being killed by CTLs. The ‘vul’ stands for ‘vulnerable’, as
to say that the cells are vulnerable to immune attacks.

5. HBV resistant and Normal looking cells (Hr) : After a few generations
of HBV infection, cells will evolve into HBV resistant cells from the Immune
pressure received by CTLs which keeps killing them. Once HBV resistant, it
will not replicate the virus, yet it has a chance to either undergo fibrosis or
carcinoma.

6. Free Virions/Virus Population in Plasma (V ) : Free virions are pro-
duced by infected cells which replicate the virus, and the virions will only be
‘naturally’ removed (through lymphatic actions etc) if no treatment is given.

3.3 Model without Delay

The first model presented here is without time delay, and a system of five differential
equations is presented here, with a description of the parameters:
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dH

dt
= Π− (β1 + β2)V H + c1Itol + c2Ivul − µH

dItol

dt
= β1V H − (σ + c1 + µ+ f(d))Itol

dIvul

dt
= β2V H + σItol − (c2 + d+ µ)Ivul

dHr

dt
= f(d)Itol − µHr − δV Hr

dV

dt
= k(Itol + Ivul)− µvV

Π The cell regeneration/birth rate, here the assumption is that the cell always
regenerates into a healthy cell

(β1 + β2) Incidence ratio of infection. We are under the assumption of a constant
liver size/constant starting size.

c1, c2 The cure rate from the Itol, and Ivul compartment respectively, simply
assumed to be a mass action incidence.

µ, µv Cell natural death rate, and the natural death rate of viruses. This is
assumed to be equal for all cells regardless of their compartment.

β1, β2 The transmission ratio to the infected compartments, Itol, and Ivul respec-
tively.

σ Transfer rate from the Itol to the Ivul compartment.

d Death rate of cells in the Ivul compartment, due to cytotoxic activity (by
immune response) etc.

f(d) Evolution rate into a HBV resistant cell which are susceptible to fibro-
sis/carcinoma

δ Rate of fibrosis/carcinoma of HBV resistant cells

k Rate of virion replication

Note that this model is not exclusive to Hepatitis B, but can be applicable to any
infections that undergo a similar progression.
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3.3.1 Explanation of the model

As noted from the molecular biology of a Hepatitis B infection, the compart-
ments were chosen in accordance to the stages that a cell undergoes during a viral
attack. The non-disease states are the healthy cell compartment, and the HBV resis-
tant compartment. All of the other compartments take part in forming the picture
of a HBV infection.nThe inclusion of the pathway from the exposed to the immune
vulnerable stage describes the contended subject [8] of whether there are any cyto-
toxic activities during the immune tolerant stage. This hypothesis can be controlled
by the parameters β1 and β2.

As the immune tolerant stage does not involve death due to cytotoxic activity,
the only ‘death’ terms are it’s natural death parameter µ and its ‘evolution’ param-
eter f(d). Eventually, the cells in the immune tolerant stage will be targeted by the
immune response, controlled by the paramter σ. 1

σ
can also be thought of as the

mean time that a cell in the Itol compartment spends before progressing into the
Ivul compartment. The ‘evolution’ parameter f(d) describes the notion of cells mu-
tating to HBV resistant cells in accordance with the immune pressure that they are
subjected to. This evolution is hypothesised to be governed by a strictly increasing
function f(d), a function dependent on the death rate of immune vulnerable cells
due to immune activity.

The ‘evolved’ cells are termed ‘HBV resistant and healthy looking cells’ Hr, and
this compartment is similar to the standard ‘Removed’ class in the sense that it is a
final compartment which outfluxes the diseased cells. The parameter δ describes the
‘mutation’ rate into a fibrous cell (fibrosis) or a cancerous cell (carcinoma). There
are indications in the literature [8] that this mutation is more prominent with higher
viral titres which is the reason behind the mass action incidence with both the viral
population and the HBV resistant population.

The parameters c1 and c2 indicate random curing of cells from the infected com-
partments suggested by [8], which gave rise to the idea that the entire liver popula-
tion isn’t just destroyed by the cytotoxic activities of the T-cells but still maintains
a structure, and persists in a chronic state without organ failure (in the case of a
chronic infection).

Finally, one can conjecture the various pathways of a HBV infection through this
model:

1. Acute Infection: High β2, c2, σ, µv Low βe, k, f(d)

2. Chronic Hepatitis: High βe, β1, Low σ, c1, c2

3. Fulminant Hepatitis: High β2, d, σ Low c1, c2
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3.3.2 Verification of the Model

Here I present further details regarding the validity of the model by studying
the non-negativity and boundedness of the solutions for the system.

Non-negativity of Solutions

Claim : Suppose that H(0), Itol(0), Ivul(0), Hr(0), V (0) ≥ 0.
Then H(t), Itol(t), Ivul(t), Hr(t), V (t) ≥ 0 for all t > 0.

Proof Consider the modified system (with ε > 0)

dH

dt
= Π− (β1 + β2)V H + c1Itol + c2Ivul − µH + ε

dItol

dt
= β1V H − (σ + c1 + µ+ f(d))Itol + ε

dIvul

dt
= β2V H + σItol − (c2 + d+ µ)Ivul + ε

dHr

dt
= f(d)Itol − µHr − δV Hr + ε

dV

dt
= k(Itol + Ivul)− µvV + ε

and call its solution Hε(t), Iεtol(t), I
ε
vul(t), H

ε
r(t), V

ε(t) which is assumed to satisfy

Hε(0) = H(0) + ε

Iεtol(0) = Itol(0) + ε

Iεvul(0) = Ivul(0) + ε

Hε
r(0) = Hr(0) + ε

V ε(0) = V (0) + ε

Note that Hε(0), Iεtol(0), Iεvul(0), Hε
r(0), V ε(0) > 0, since ε > 0.

Suppose that a variable goes negative, and that the first to do so is Hε(t). Then
there exists a t∗such that

Hε(t∗) = 0,
dHε

dt
≤ 0

and the other variables satisfy

Iεtol(t
∗) ≥ 0, Iεvul(t

∗) ≥ 0, Hε
r(t
∗) ≥ 0, V ε(t∗) ≥ 0
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Then at time t∗,

dHε

dt
(t∗) = Π− (β1 + β2)V ε(t∗)︸ ︷︷ ︸

≥ 0

Hε(t∗)︸ ︷︷ ︸
= 0

+c1 Iεtol(t
∗)︸ ︷︷ ︸

≥ 0

+c2 Iεvul(t
∗)︸ ︷︷ ︸

≥ 0

−µHε(t∗)︸ ︷︷ ︸
= 0

+ ε︸︷︷︸
> 0

> 0

which contradicts dHε

dt
(t∗) ≤ 0. Without loss of generality we can say the same

thing about the other variables by letting the variable to be the first variable that
goes negative. This contradiction shows that Hε(t), Iεtol(t), I

ε
vul(t), H

ε
r(t), V

ε(t) ≥ 0

Finally, let ε→ 0, then Hε(t)→ H(t), etc. Hence, H(t) ≥ 0, Itol(t) ≥ 0, Ivul(t) ≥
0, Hr(t) ≥ 0, V (t) ≥ 0 for all t > 0.

Boundedness of Solutions

Now that the non-negativity of the solutions is guaranteed, the boundedness of the
solutions can be discussed as well.

Recall the system as

dH

dt
= Π− (β1 + β2)V H + c1Itol + c2Ivul − µH

dItol

dt
= β1V H − (σ + c1 + µ+ f(d))Itol

dIvul

dt
= β2V H + σItol − (c2 + d+ µ)Ivul

dHr

dt
= f(d)Itol − µHr − δV Hr

dV

dt
= k(Itol + Ivul)− µvV

Adding the first 4 equations gives,

d

dt
(H + Itol + Ivul +Hr) = Π− µH − µItol − dIvul − µIvul − δV Hr − µHr

≤ Π− µ(H + Itol + Ivul +Hr)

Thus,
dy

dt
≤ Π− µy where y = H + Itol + Ivul +Hr
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and thus we can say that,

y ≤ ȳ where
dȳ

dt
= Π− µȳ(t)

The limit of ȳ as t→∞ is then

lim
t→∞

ȳ(t) =
Π

µ
.

But y(t) ≤ ȳ(t). Therefore,

lim sup
t→∞

y(t) ≤ lim
t→∞

ȳ(t) =
Π

µ

which implies that y(t) is bounded.

Since y(t) = H+Itol+Ivul+Hr, and each of these four functions is greater than or
equal to 0 as shown from the section before, it follows that H(t), Itol(t), Ivul(t), Hr(t)
are bounded.

To prove the boundedness of V (t), let K1 and K2 be bounds for Itol and Ivul

respectively that hold for all t. Then,

V ′(t) ≤ k(K1 +K2)− µvV (t)

Therefore, V (t) ≤ V̄ (t) where V̄ ′(t) = k(K1 +K2)−µvV̄ (t). Following a similar
argument as above, we have that

lim
t→∞

V̄ (t) =
k(K1 +K2)

µv

and that

lim sup
t→∞

V (t) ≤ lim
t→∞

V̄ (t) =
k(K1 +K2)

µv
implying that V (t) is bounded.

Thus we have shown that the model proposed behaves accordingly and suitably
for a model regarding cell population dynamics, being non-negative and bounded.
We can now proceed to analyse the model with confidence that it is valid.

3.3.3 Next Generation Matrix Method Analysis of the Model

Linearisation about the disease-free steady state produces a decoupled system :

dItol

dt
= β1V

Π

µ
− (σ + c1 + µ+ f(d))Itol

dIvul

dt
= β2V

Π

µ
+ σItol − (c2 + d+ µ)Itol

dV

dt
= k(Itol + Ivul)− µvV
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which is sufficient to determine Itol, Ivul and V .

In which case we can separate the infection influx and progression outflux as
below,

F =

 β1V
Π
µ

β2V
Π
µ

k(Itol + Ivul)

 V =

 (σ + c1 + µ+ f(d))Itol

−σItol + (c2 + d+ µ)Ivul

µvV


Then, writing the system in matrix form, x′ = (F − V )x, we can deduce the

matrix F , and V , from the vectors above.

F =

 0 0 β1
Π
µ

0 0 β2
Π
µ

k k 0

 V =

 σ + c1 + µ+ f(d) 0 0
−σ c2 + d+ µ 0
0 0 µv


According to the Next Generation Matrix method, the Next Generation Matrix

K is given by FV −1. Therefore we must find the inverse of V . Using the cofactor
matrix (C) method, the inverse of V is given by

V −1 =
1

det(V )
CT

=
1

(σ + c1 + µ+ f(d))(c2 + d+ µ)µv

·


(c2 + d+ µ)µv 0 0

σµv (σ + c1 + µ+ f(d))µv 0

0 0
(σ + c1 + µ+ f(d))

·(c2 + d+ µ)


where CT denotes the transpose of the matrix of cofactors.

Multiplying F to V −1, we arrive at the next generation matrix, K :

K =FV −1 =
1

(σ + c1 + µ+ f(d))(c2 + d+ µ)µv

·


0 0

β1
Π

µ
(σ + c1 + µ+ f(d))

·(c2 + d+ µ)

0 0
β2

Π

µ
(σ + c1 + µ+ f(d))

·(c2 + d+ µ)
k((c2 + d+ µ) + σµv) k(σ + c1 + µ+ f(d))µv) 0


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A search for the eigenvalues(λ) of the above matrix (without the factor in front)
gives rise to the characteristic equation :

0 = −λ(λ2 − β2
Π

µ
(σ + c1 + µ+ f(d))2(c2 + d+ µ)kµv)

+ β1
Π

µ
(σ + c1 + µ+ f(d))(c2 + d+ µ)λk((c2 + d+ µ)µv + σµv)

Hence, the eigenvalues of the matrix are either λ = 0, or satisfy

0 = λ2 − β2
Π

µ
(σ + c1 + µ+ f(d))2(c2 + d+ µ)kµv

− β1
Π

µ
(σ + c1 + µ+ f(d))(c2 + d+ µ)k((c2 + d+ µ)µv + σµv)

This is a simple quadratic equation, and thus the spectral radius of the matrix is

ρ(FV −1) =

√
Π

µ
(σ + c1 + µ+ f(d))(c2 + d+ µ)kµv

√
β2(σ + c1 + µ+ f(d)) + β1(c2 + d+ µ+ σ)

After we restore the factor in front of the above matrix, this gives:

RNGM
0 =

√
Πk(β2(σ + c1 + µ+ f(d)) + β1(c2 + d+ µ+ σ))

µµv(σ + c1 + µ+ f(d))(c2 + d+ µ)

The expression of RNGM
0 suggests there are particularly sensitive parameters

which affect its numerical value. The terms Π, k, β2, and β1 only appear on the
numerator, suggesting these parameters can affect the value of the basic reproduction
number significantly. An increase in any of those parameters would indicate an
increase in R0. This makes epidemiological sense as,

• Π, This is the rate in which the susceptible population is replenished, so the
greater the size of the susceptible population, the higher the chance of infection.

• k, This is the viral replication rate. Increased number of the HBV virus suggests
a higher chance of infection.

• β, The terms β1 and β2 are incidence ratios which describe a contact between
a healthy cell and a virus resulting in the transfer to two different infected
compartments. The higher this ratio is, the greater the ability of the infection
to thrive.
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On the other hand, an increase in µ and µv is related to the decrease of R0.
This is also sensible as the less cells and virus there are, the less likely it is that an
infection will spread.

The rest of the parameters have a precarious balance on the value for R0. A rise
in the cure rates c1 and c2 indicates an increase in R0, probably due to the increase
in susceptible cell population which relates to more potential infections. Yet a dom-
inant c1 and c2 will mean that the hepatocytes can endure more severe infections.
Likewise many of the other parameters require further study to gain more insight
into their nature in the governing of the value of the basic reproduction number.

With these qualitative analyses of the parameter values, we can create practical
intervention strategies to decrease the invasive severity of the disease, that is, to
reduce the value of R0. It is hard to provide practical comments about realistic
intervention methods to control those parameters due to the lack of my biological
and medical knowledge.

3.3.4 Numerical Results

For Fig. 3.1, and Fig. 3.2 below, the initial condition (H, Itol, Ivul, Hr, V ) =
(Π
µ
, 0, 0, 0, 10) is used, and for Fig. 3.3 (H, Itol, Ivul, Hr, V ) = (Π

µ
, 0, 0, 0, 100) is used.

As expected for a system with a basic reproduction number bigger than 1, the
system shown in Fig. 3.1 diverges from the disease-free equilibrium and eventually
reaches an endemic equilibrium. As hypothesised for this model, the Ivul compart-
ment rises later than the Itol compartment, describing the delay in the body’s immune
tolerance to immune active stage. Eventually the cells of the liver are dominated by
these types of cells, yet the total population is not destroyed, it persists. The graph
seems to portray a case where the patient develops a chronic infection, with the virus
population persisting, and most of the hepatocyte population converted into diseased
cells.
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Figure 3.1: The graph above shows a case where R0 is 1.7002. The parameter values
chosen were Π = 500, µ = 0.05, β1 = 0.00085, β2 = 0.00013, d = 0.1, k = 1.7, µv =
1.67, f(d) = 3d2, σ = 0.05, c1 = 1.5, c2 = 0.01, δ = 10−9. These values do not
reflect realistic values found in medical data; they have been chosen arbitrarily to
depict general results for the model.
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It was hard to find parameter values which describe a return to the disease-free
equilibrium after an introduction of disease, i.e R0 < 1. In fact, an endemic steady
state was shown for many of the cases with R0 < 1 as shown from the graph in Fig.
3.2 which is for a system with R0 = 0.7142.
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Figure 3.2: The parameter values chosen were Π = 100, µ = 0.05, β1 =
0.00085, β2 = 0.00013, d = 0.1, k = 1.5, µv = 1.67, f(d) = 3d2, σ = 0.05, c1 =
1.5, c2 = 0.01, δ = 10−9. This gives R0 = 0.7142 < 1, and the graph highly suggests
a backward bifurcation occuring, where despite R0 < 1, the disease-free equilibrium
is not the only stable equilibrium. Depending on the parameters, the endemic steady
state may be stable as shown from the figure above. This notion will be further dis-
cussed in the section ’Further Analysis of the Model without Delay’ below, where we
attempt to find an expression for the endemic steady state.

This presents a possible area for further research, to find the global condition for
the stability of the disease-free equilibrium.
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For certain parameters where R0 < 1, the graph displayed behaviours like below,
where the system evolves over a very short period, and returns to the disease-free
equilibrium.
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Figure 3.3: Parameter Values : Π = 100, µ = 0.15, β1 = 0.00085, β2 = 0.00013, d =
0.1, k = 1.5, µv = 1.67, f(d) = 3d2, σ = 0.05, c1 = 1.5, c2 = 0.01, δ = 10−9. This
is the usual behaviour we would expect when the basic reproduction number R0 is
less than 1, yet as seen with the 2nd case above, it is not definite for the case R0 < 1

This can be an example that demonstrates the caution that comes with the
analysis of the basic reproduction number mentioned before. The basic reproduction
number is not an objective quantity that can be compared between diseases, and it is
not defined uniquely for each model. It requires thorough analysis about its nature
and significance in order to be utilised in other practical fields.
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Generalisations of the model I proposed earlier include the following.

3.4 Model with Exposed Class

dH

dt
= Π− βV H + c1Itol + c2Ivul − µH

dE

dt
= βV H − (κ1 + κ2)V H − µE

dItol

dt
= κ1V H − (σ + c1 + µ+ f(d))Itol

dIvul

dt
= κ2V H + σItol − (c2 + d+ µ)Ivul

dHr

dt
= f(d)Itol − µHr − δV Hr

dV

dt
= k(Itol + Ivul)− µvV

This model incorporates an ‘Exposed’ compartment E, where the exposed com-
partment represents the temporary transition of the healthy hepatocytes into a state
where it isn’t yet infective due to the time required for viral transcription, production,
etc. β1 and β2 is removed, and a single β is in the first equation as a standardized
mass incidence ratio at which the contact between a healthy cell and a virus creates
an exposed cell. Two new paramters κ1, κ2 are added which represents the rate at
which the exposed cells progress on to the Itol and Ivul compartment respectively.
Recall the SEIR model example from the previous chapter. By comparing the basic
reproduction number between a model with and without delay, it is noted that the
parameter κ is comparable to the delay τ . Hence the parameters κ1, κ2 also relates
to the mean latency time 1

κ
that the cells are in the exposed class before becoming

a fully infected cell.

The basic reproduction number for this model can be simply obtained using the
same next generation matrix method used for the standard model in the previous
section. I have not included the calculation nor the basic reproduction number for
this model. Our main focus will be on the model with an explicit time delay as given
below.
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3.5 Model with Explicit time Delay

dH

dt
= Π− (β1 + β2)V H + c1Itol + c2Ivul − µH

dE

dt
= (β1 + β2)V H − (β1 + β2)V (t− τ)H(t− τ)e−µτ − µE

dItol

dt
= β1V (t− τ)H(t− τ)e−µτ − (σ + c1 + µ+ f(d))Itol

dIvul

dt
= β2V (t− τ)H(t− τ)e−µτ + σItol − (c2 + d+ µ)Ivul

dHr

dt
= f(d)Itol − µHr − δV Hr

dV

dt
= k(Itol + Ivul)− µvV

As noted from the previous model, this model simply re-iterates the point of the
time delay occuring between a healthy cell becoming ’fully’ infectious due to viral
mechanisms. The difference is that here an explicit time delay τ is given, instead of
parameters κ1 and κ2.

The time delay term in the second equation can be derived using an age-structured
modelling approach. It is the term that corresponds to the rate in which exposed
cells mature into infected cells. Let i(t, a) be the population density at time t that
were infected a time units before t. That is, cells with ’disease age’ a. Consider a
small increment of time dt, then the change in the population density is given by
the simple conservation law, ’birth - death’. In our case, birth rate references rate
of new infections. This ’birth’ rate only contributes to i(t, 0), i.e cells of age 0. Thus
in general di(t, a) the small change in population density during the small increment
of time dt is only governed by the death of cells, simply given by µ · i(t, a)dt. Which
then gives rise to the following equation.

di(t, a) =
∂i

∂t
dt+

∂i

∂a
da = −µi(t, a)dt

This equation can be divided by dt with the note that da
dt

= 1 as the unit change
in age and time is the same. Thus we arrive at the following equation,

∂i

∂t
+
∂i

∂a
= −µi(t, a)
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This linear partial differential equation is the McKendrick-von Foerster equation,
and a summary of the theory is outlined in [7] by Murray.

Our equation is subject to the condition

i(t, 0) = (β1 + β2)V (t)H(t)

where i(t, 0) denotes the rate at whcih new infections arise. The term of interest
to us is i(t, τ) which is the population density at time t with cells of disease age
τ , that is the population density of cells which have been ‘matured’ in the exposed
compartment. This is the rate at which cells moved from the exposed compartment
to the infected compartments. Hence, we need to solve for i(t, τ).

Defining iξ(a) = i(a + ξ, a), the McKendrick-von Foerster equation simplifies to
diξ(a)
da

= −µiξ(a). This is a simple ODE that can be solved trivially as follows,

iξ(a) = iξ(0)e−µa = i(ξ, 0)e−µa = (β1 + β2)e−µaV (ξ)H(ξ)

Therefore, we can find the term of our interest i(t, τ), by setting a = τ , and
ξ = t− τ which yields

i(t, τ) = (β1 + β2)e−µτV (t− τ)H(t− τ)

This derivation shows that the exposed compartment serves as an intermediate
‘age period’ in which an infected healthy cell ‘ages’ until becoming completely infec-
tious. The exponential term corresponds to the death of the cells while ‘aging’. With
the model derived thoroughly, we can now start to analyse the disease-free steady
state of the model.

The linearisation of the system about the disease-free equilibrium (Π
µ
, 0, 0, 0, 0, 0)

gives rise to the following decoupled subsystem : (where the tilde variables represent
the linearised variables, which are small perturbations from the equilibrium)

dĨtol

dt
=

Π

µ
β1Ṽ (t− τ)e−µτ − (σ + c1 + µ+ f(d))Ĩtol

dĨvul

dt
=

Π

µ
β2Ṽ (t− τ)e−µτ + σĨtol − (c2 + d+ µ)Ĩvul

dṼ

dt
= k(Ĩtol + Ĩvul)− µvṼ
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As this system is linear, we can try the following solution for the system of linear
ODEs:

(Ĩtol, Ĩvul, Ṽ ) = (p1, p2, p3)eλt

where p1, p2 and p3 are constants.

Substituting this ansatz into the linearised system, and expressing the resulting
equations in matrix form:

−(A1 + λ) 0 Π
µ
β1e
−(λ+µ)τ

σ −(A2 + λ) Π
µ
β2e
−(λ+µ)τ

k k −(µv + λ)




p1

p2

p3

 =


0

0

0


where A1 = (σ + c1 + µ+ f(d)), A2 = (c2 + d+ µ).

For non-trivial solutions (p1, p2, p3), it is required that the matrix should be
non-invertible, hence it’s determinant is 0. Thus with this condition, we can obtain
a characteristic equation for λ, which is given by:

(A1 + λ)(A2 + λ)(µv + λ)

β2(A1 + λ) + β1(A2 + λ+ σ)
=

Πk

µ
e−(λ+µ)τ

3.5.1 Deriving an R0 for the Delayed System

The structure of the system above is of a cooperative system in the sense of Smith
[9]. Additionally, by Theorem 5.5.1 on page 92 of Smith [9], it is assured that the
dominant root (the root of greatest real part) of the characteristic equation is a real
number. Therefore, it is sufficient to restrict attention to the real roots, and graphi-
cal arguments can help.

Let us define two functions, f(λ) and g(λ) as the following

f(λ) =
(A1 + λ)(A2 + λ)(µv + λ)

β2(A1 + λ) + β1(A2 + λ+ σ)

g(λ) =
Πk

µ
e−(λ+µ)τ

Then we can numerically plot the functions with arbitrary parameter values to
see the general behaviour of the two functions.
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The plots were made with arbitrary parameter values that depicts the general
behaviour of the functions. The graph of f(λ) as seen above has a single vertical
asymptote of a negative value λ = (root of denominator = 0).

We can see from the graph that any real root of the characteristic equation
f(λ) = g(λ) will be negative if f(0) > g(0). To make this more rigorous, we claim
that in fact f ′(λ) > 0 for λ > 0 and g′(λ) < 0 when λ > 0. The second claim is
obvious.

Regarding the first, routine differentiation shows that

f ′(λ) =
(β2(A1 + λ) + β1(A2 + λ+ σ)) d

dλ
((A1 + λ)(A2 + λ)(µv + λ))

(β2(A1 + λ) + β1(A2 + λ+ σ))2

− (A1 + λ)(A2 + λ)(µv + λ)(β1 + β2)

(β2(A1 + λ) + β1(A2 + λ+ σ))2

it is enough to show the numerator is positive.
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Extracting the numerator,

Num. = (β2(A1 + λ) + β1(A2 + λ+ σ))((A1 + λ)(2λ+ A2 + µv) + (A2 + λ)(µv + λ))

− (A1 + λ)(A2 + λ)(µv + λ)(β1 + β2)

= (β2(A1 + λ) + β1(A2 + λ+ σ))((A1 + λ)(A2 + λ) + (A1 + λ)(µv + λ)

+ (A2 + λ)(µv + λ))− (A1 + λ)(A2 + λ)(µv + λ)(β1 + β2)

As σ is a positive constant, the following is true (by omitting σ)

(β2(A1 + λ) + β1(A2 + λ+ σ))((A1 + λ)(A2 + λ) + (A1 + λ)(µv + λ) + (A2 + λ)(µv + λ))

− (A1 + λ)(A2 + λ)(µv + λ)(β1 + β2)

> β2(A1 + λ)(A1 + λ)(A2 + λ) + β2(A1 + λ)(A1 + λ)(µv + λ)+β2(A1 + λ)(A2 + λ)(µv + λ)

+ β1(A2 + λ)(A1 + λ)(A2 + λ)+β1(A2 + λ)(A1 + λ)(µv + λ) + β1(A2 + λ)(A2 + λ)(µv + λ)

− (A1 + λ)(A2 + λ)(µv + λ)(β1 + β2)

The colour coded terms of the polynomial cancel out, and thus there are only
positive terms left in the polynomial, asserting the fact that the numerator of f ′(λ)
is greater than 0 for λ > 0.

This proves that f ′(λ) > 0 for all λ > 0. Knowing that f ′(λ) > 0 and g′(λ) < 0
for all λ > 0, it follows rigorously that if f(0) > g(0), then all real roots of the
characteristic equation must be negative. Thus we have a condition for the charac-
teristic equation to produce a negative root resulting in a condition for stability of
the disease-free equilibrium.

The condition f(0) > g(0) becomes

(σ + c1 + µ+ f(d))(c2 + d+ µ)µv
β2(σ + c1 + µ+ f(d)) + β1(c2 + d+ µ+ σ)

>
Πk

µ
e−µτ

which is therefore the condition for stability of the disease-free steady state.

Hence, a basic reproduction number for this system can be defined as

R0(τ) =
Πke−µτ (β2(σ + c1 + µ+ f(d)) + β1(c2 + d+ µ+ σ))

µµv(σ + c1 + µ+ f(d))(c2 + d+ µ)

Recall that

RNGM
0 =

√
Πk(β2(σ + c1 + µ+ f(d)) + β1(c2 + d+ µ+ σ))

µµv(σ + c1 + µ+ f(d))(c2 + d+ µ)
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Therefore for τ = 0, √
R0(0) = RNGM

0

and so RNGM
0 < 1 if and only if R0(0) < 1, verifying the consistency between the

model without delay and with explicit delay. The square root for the next generation
matrix method arises since it takes a virus to infect a different cell, i.e it takes 2 steps
for the infected cells to ‘infect’ susceptible cells.

3.5.2 Numerical Results

For all of the results below, the initial condition (H, Itol, Ivul, Hr, V ) = ( Π
mu
, 0, 0, 0, 10)

is used.
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Figure 3.4: Parameter Values : Π = 50, µ = 0.015, β1 = 0.00025, β2 =
0.000073, d = 0.08, k = 1.2, µv = 0.67, f(d) = 3d2, σ = 0.1, c1 = 0.013, c2 =
0.018, δ = 10−9, τ = 7. A graph of the time delayed system which has a basic
reproduction number R0 of 20.6799. As expected, the system evolves away from the
disease-free equilibrium and eventually reaches an endemic equilibrium. The time
delay is clearly seen by the delay in the peak between the exposed compartment
and the Ivul, Itol compartments. The graph also suggests a signifcant amount of
hepatocyte destruction, yet the hepatocyte population is not completely wiped out.
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Figure 3.5: Parameter Values : Π = 10, µ = 0.045, β1 = 0.00025, β2 =
0.000073, d = 0.08, k = 1.2, µv = 0.67, f(d) = 3d2, σ = 0.1, c1 = 0.013, c2 =
0.018, δ = 10−9, τ = 5. This graph shows that, for a set of parameter values with
R0 < 1, the system evolves to the disease-free equilibrium after an initial introduc-
tion of disease. Various sets of parameter values which give R0 < 1 do suggest that,
for this model, unlike the standard model without time delay, the bifurcation (with
R0 as bifurcation parameter) is a transcritical forward bifurcation from a disease-free
steady state to an endemic steady state. Further analytical research into the endemic
steady state, and the condition for global stability of the disease-free steady state,
would provide rigorous insight into this claim.
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3.6 Further Analysis of the Model without Delay

In this section, the model without delay is studied further, to seek the existence of
endemic steady states. An endemic steady state is a steady state where the disease
compartments are positive values. It occurs when R0 > 1, representing a sustained
state of disease progression.

Recall the model without delay is as follows:

dH

dt
= Π− (β1 + β2)V H + c1Itol + c2Ivul − µH

dItol

dt
= β1V H − (σ + c1 + µ+ f(d))Itol

dIvul

dt
= β2V H + σItol − (c2 + d+ µ)Ivul

dHr

dt
= f(d)Itol − µHr − δV Hr

dV

dt
= k(Itol + Ivul)− µvV

Using the 1st, 2nd, 3rd, and 5th equations of the above model, we can start to extract
information about possible endemic steady states.

From the 2nd equation, at a steady state (dItol
dt

= 0), we have

β1V H = (σ + c1 + µ+ f(d))Itol (3.1)

Similarly, from the 3rd equation,

β2V H + σItol = (c2 + d+ µ)Ivul (3.2)

and therefore substituting V H from equation (1), we have

β2

β1

Itol(σ + c1 + µ+ f(d)) (3.3)

The fifth equation gives, at a steady state

V =
k

µv
(Itol + Ivul) (3.4)
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From the first equation, we have at a steady state,

Π + c1Itol + c2Ivul = (β1 + β2)V H − µH (3.5)

We can eliminate H in equation 3.5 by substituting V H = (σ+ c1 +µ+ f(d)) Itol
β1

(and H) from equation 3.1,

Π + c1Itol + c2Ivul = (β1 + β2)(σ + c1 + µ+ f(d))
Itol

β1

−µ(σ + c1 + µ+ f(d))
Itol

β1V

(3.6)

Hence we are left with 3 simultaneous equations (3.3, 3.4, 3.6), with 3 variables
(Itol, Ivul, V ).

Next, we aim to eliminate Ivul. From equation 3.3,

Ivul =
Itol

c2 + d+ µ

(
β2

β1

(σ + c1 + µ+ f(d)) + σ

)
Then, equation 3.4 becomes,

V =
kItol

µv

{
1 +

1

c2 + d+ µ

(
β2

β1

(σ + c1 + µ+ f(d)) + σ

)}

Therefore, by substituting these two equations into equation 3.6 yields

Π + c1Itol +
c2Itol

c2 + d+ µ

{
β2

β1

(σ + c1 + µ+ f(d)) + σ

}

= (β1 + β2)(σ + c1 + µ+ f(d))
Itol

β1

− µ(σ + c1 + µ+ f(d))

β1

µv
k

(
1

1 + 1
c2+d+µ

(
β2
β1

(σ + c1 + µ+ f(d)) + σ

))
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The last equation involves Itol only, the other unknowns having been eliminated.
Simplifying, we get

Π +
µµv
β1k

(σ + c1 + µ+ f(d))

(
1

1 + 1
c2+d+µ

(
β2
β1

(σ + c1 + µ+ f(d)) + σ

))

= Itol

[
β1 + β2

β1

(σ + c1 + µ+ f(d))− c1 −
c2

c2 + d+ µ

{
β2

β1

(σ + c1 + µ+ f(d)) + σ

}]

= Itol

[
β1 + β2

β1

(σ + µ+ f(d)) +
β2

β1

c1 −
c2

c2 + d+ µ

{
β2

β1

(σ + c1 + µ+ f(d)) + σ

}]

=
Itol

c2 + d+ µ

[
β1 + β2

β1

(σ + µ+ f(d))(c2 + d+ µ) +
β2

β1

c1(c2 + d+ µ)

− c2

{
β2

β1

(σ + c1 + µ+ f(d)) + σ

}]

=
Itol

c2 + d+ µ

[
(σ + µ+ f(d))(c2 + d+ µ) +

β2

β1

(σ + µ+ f(d))(c2 + d+ µ)

+
β2

β1

c1(d+ µ)− c2

{
β2

β1

(σ + µ+ f(d)) + σ

}]

=
Itol

c2 + d+ µ

[
(µ+ f(d))(d+ µ) +

β2

β1

(σ + µ+ f(d))(d+ µ) +
β2

β1

c1(d+ µ)

]

Therefore, we have that

Itol =

(c2 + d+ µ)

 Π+µµv
β1k

(σ+c1+µ+f(d))

1+ 1
c2+d+µ

(
β2
β1

(σ+c1+µ+f(d))+σ

)


(µ+ f(d))(d+ µ) + β2
β1

(σ + µ+ f(d))(d+ µ) + β2
β1
c1(d+ µ)
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Hence, the endemic steady state of this system is given by,

I∗tol =

(c2 + d+ µ)

 Π+µµv
β1k

(σ+c1+µ+f(d))

1+ 1
c2+d+µ

(
β2
β1

(σ+c1+µ+f(d))+σ

)


(µ+ f(d))(d+ µ) + β2
β1

(σ + µ+ f(d))(d+ µ) + β2
β1
c1(d+ µ)

I∗vul =
Itol

c2 + d+ µ

(
β2

β1

(σ + c1 + µ+ f(d)) + σ

)

V ∗ =
kItol

µv

{
1 +

1

c2 + d+ µ

(
β2

β1

(σ + c1 + µ+ f(d)) + σ

)}

H∗ =
(σ + c1 + µ+ f(d))I{tol

β1V

H∗r =
f(d)Itol

µ+ δV

where Itol is given by the first equation above, and V by the third equation.

The fact that the endemic steady state expressions are made completely of posi-
tive values suggests a difficulty in finding a condition for the parameter values which
determines the occurence of the endemic steady state. It seems the endemic equi-
librium exists without any condition, and this is also shown in our numerical results
where an endemic steady state was found even for R0 < 1.

The stability of the endemic equilibrium is determined by the analysis of the
Jacobian matrix of the system evaluated at the endemic steady state. Using the
1st, 2nd, 3rd and 5th equations only, we have the Jacobian matrix, evaluted at the
endemic steady state as,

J(H∗, I∗tol, I
∗
vul, V

∗) =


−(β1 + β2)V ∗ − µ c1 c2 −(β1 + β2)H∗

β1V
∗ −(σ + c1 + µ+ f(d)) 0 β1H

∗

β2V
∗ σ −(c2 + d+ µ) β2H

∗

0 k k −µv


where H∗, I∗tol, I

∗
vul, V

∗ are given by the equations above.
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The characteristic equation for this matrix is given by det(J(H∗, I∗tol, I
∗
vul, V

∗)−
λI), where I is a 4× 4 identity matrix. Thus in matrix form it is,

det(J(H∗, I∗tol, I
∗
vul, V

∗)− λI) =

∣∣∣∣∣∣∣∣
−(β1 + β2)V ∗ − µ− λ c1 c2 −(β1 + β2)H∗

β1V
∗ −(σ + c1 + µ+ f(d))− λ 0 β1H

∗

β2V
∗ σ −(c2 + d+ µ)− λ β2H

∗

0 k k −µv − λ

∣∣∣∣∣∣∣∣ .

This will be a very complicated quartic equation considering the expressions
we got for the endemic steady states, and it will be virtually impossible to solve
analytically. In theory, the study of the expressions of λ, which are the eigenvalues
of the Jacobian matrix evaluated at the endemic steady state, will show insight to
the condition for stability of the endemic steady state.
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Chapter 4

Limitations and Discussion

4.1 General Discussion

In this report, the idea behind epidemiological modelling was discussed, and an
important quantity called the basic reproduction number was derived and studied.

It is noted that the basic reproduction number describes the initial severity of
a disease, and it has been mentioned that it is not an objective metric which we
can use to compare diseases, rather it is a threshold value used in the study of a
disease model, with different interpretations and derivations. It is mainly studied to
determine controllable factors in a disease, in order to find intervention strategies
decreasing the adverse effects of a disease.

We have also discussed a standardised method which simplifies the derivation of
R0, called the Next Generation Matrix Method. It uses the concept of generational
change to a distribution represented by a matrix. It is a novel method which attempts
to provide a rigorous and standardised pathway to obtaining a basic reproduction
number, making it an attractive method in contrast to the general method of directly
finding a threshold condition. The Next Generation Matrix Method is limited in the
sense that it can only be used on relatively simple models, for example we cannot
use it for models with time delay.

The integral part of epidemiology lies in the aim of finding the factors involved
in the transmission and progression of a disease in order to control it. Therefore, the
mathematical modelling of diseases need to be a holistic process generalising what
is known in medicine, viability of practical measures, and mathematical theory. A
good mathematical model of disease is one which is not too complicated to produce
limited analysis and limited attractive mathematical features, and not too simple
which might overlook the complexity of the dynamics of the disease.
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Additionally, on top of adequate model formulation, a rigorous methodology and
definition of the model is required. There is already a divide in the definition of
the basic reproduction number between epidemiologists (who use the definition ‘the
average number of infections that one individual generates’) and mathematicians,
and despite the fact that both defintions can be related, it is this kind of divide
which might impede with the comprehensive study of a disease. Hence developments
such as the Next Generation Matrix Method, attempting to generalise and provide a
uniform definition and method are encouraged for the advancement of this field into a
systematic study invloving approaches that include epidemiology, biology, medicine,
sociology, and mathematics. Thus good practices, and areas of future research will
include the following :

• Forming models with measurable parameters for model validation and func-
tional predictions.

• Attempts to develop methods which give rise to a rigorous definition of the
basic reproduction number.

• Defining other critical values in the mathematical model which can have real-
istic meanings.

• Connecting different models in different scales of space and time (e.g Population
dynamics to Cell dynamics) to produce an encompassing model.

4.2 Discussion about the Hepatitis B Viral Dy-

namics Models

A model for Hepatitis B was devised, with further generalisations of the model
including the model with time delay. We have verified that the system is a valid
epidemiological model, and its analysis gave interesting insights.

4.2.1 Aims

• To develop a model which can describe the viral and cellular population dy-
namics of a HBV attack on hepatocytes.

• To find an expression for R0 for the model

• To find controllable parameters which can have real life significance.

• Analysis of endemic steady states.
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4.2.2 Achievements

• Three models were proposed based on my knowledge gained about Hepatitis
B.

• The basic reproduction number was found for the ‘standard’ model and the
model with explicit time delay.

• The endemic steady state of the ‘standard’ model was analysed.

4.2.3 Limitations and Ideas for Further Research

Although the proposed model is valid in a mathematical sense, and the numerical
results are promising, there are many limitations to the formulation and analysis of
my work.

The most prominent limitation is to do with the time delay given in the model
with the time delay. A time delay is inserted in the exposed compartment to describe
the delay in viral replication which delays the exposed cell becoming an infectious
cell. The addition of an explicit time delay relieves a parameter that would have been
given as a ‘rate of transfer‘ which is then interpreted as the average time it spends
in the compartment. Instead, it states a definite time delay of time τ which is spent
before moving on to the next compartment. This makes more epidemiological sense
for processes that are not due to interactions of the individuals in the compartment,
but for processes that are actual delays in the progression of the individual’s state.

Accordingly, instead of the σ term representing the rate of transfer from the Itol

to the Ivul, this should in fact be given as a time delay as well. Sources such as [8],
state that the ‘delay’ of a cell staying in the immune tolerant stage can last up to
30 years or more, and this is hence more likely a time delay rather than a molecular
process between individuals in the compartment given by a parameter. Considering
the fact that the time delay is very long, it would have been more suitable to model
the time that the cell is in the immune tolerant stage as a time delay.

This analysis was omitted from this report as systems with two or more time
delays are significantly harder to analyse than systems with only one time delay.
Therefore, this is an area of further research which will make the model more aligned
with the biological knowledge I have gained.

On a similar note, an idea to make the model more rigorous is to concretely
define the parameters used to formulate the model. Only a basic description of what
the parameters are meant to represent is given in this report, and to have practical
significance, the parameters should be described more thoroughly. There are areas
which can be improved by modifying the parameters and the model expression such
as:
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• The cure rate is given as a mass incidence ratio which is unrealistic. Currently it
implies that the cure rate is directly proportional to the infected compartment
size, but that is an over-simplification.

• R0 is dependent on initial size, Π
µ

of the susceptible population. This is also
unrealistic as it means a bigger liver is more likely to go endemic. Measures
such as making the mass incidence rate of infection(β1, β2) into a ‘standardised’
incidence ratio by dividing by the total population (H(t) + E(t) + Itol(t) +
Ivul(t) +Hr(t)) can be a solution as demonstrated by [4].

• With further development of the Hr compartment, the model can be used to
predict the size of cirrhosis and cancer depending on parameters.

Considering the numerical analysis of the models, the time unit for the proposed
model is not concretely defined, and the parameter values used for the numerical
analysis are not from medical data. Fine-tuning the model to retrieve realistic nu-
merical results with medical data is an area of further research that can be done.

Finally, some ideas that can further improve the models are

• Finding other thresholds than the basic reproduction number, such as an ex-
pression regarding the threshold between an acute infection and a chronic infec-
tion. A clearance of disease after a short period of Immune-tolerant/Immune-
vulnerable stage is representative of an acute infection, and an endemic steady
state is representative of a chronic infection.

• Finding the global stability condition for the basic reproduction number as
for the ‘standard’ model without time delay, we have a backward bifurcation
occuring.

• Including a serology compartment, as many of the states of a hepatitis B infec-
tion are classified using serology. A ‘switch’ parameter could be used to change
model parameters depending on the serology.

• It is hypothesised from sources, including [8], that the hepatocytes undergo
a ‘reactivation‘ phase after the immune-tolerance/immune-vulnerable stage.
This is where virus titres and inflammation of the hepatocytes increase again,
and the population levels in the different compartments are ‘unstable’, undu-
lating about a mean value. In a mathematical sense, this is suggestive of a
Hopf bifurcation occuring where an endemic steady state becomes a periodic
limit cycle solution. Thus finding parameter values which can show this kind
of behaviour or modifying the model to depict this phase is an area of further
research.
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